What Do the Physical Sciences and Social Systems Tell Us About Sustainability?

Teaching Strategy

Carl Simon and Irv Salmeen team teach a course that focuses on sustainable energy systems. The course is taken by students interested in the natural and physical science as well as engineering, architecture, business, and political science.

Their strategy is to compare and synthesize fundamental principles from chemistry, physics, geology, and biology to gain a deeper understanding of the factors influencing energy problems, such as our society’s dependence on fossil fuels.

The course also explores human behaviors and the choices we make that exacerbate energy challenges. Discussions examine how individuals, groups, and governments function in engineered, social, and natural systems. Consequently, the course integrates public policy and economics along with the natural and physical sciences into the study of energy systems.

Assignments include quantitative problem sets that apply the principles of physics and math to sustainability issues, in addition to more interpretive questions that require clear and logical thinking from multiple disciplinary perspectives. These story problems and open-ended questions challenge students to think in new ways.

Faculty Perspectives

“The Strategy of this course was to take a look at the physical sciences, chemistry, physics, biology, and geology. They say certain things about what is there, what we have to work with, and why we are stuck with fossil fuels.”

“We tried to create assignments that were science-based assignments, but we also tried to ask questions that were more interpretive, recognizing that there were students who saw themselves as physical science students, there were engineers, and there were students who were interested in the subject but weren’t comfortable with the hard sciences.”

“Many of my personal opinions on issues have been shifted. Taking this class allowed me to learn about viable alternatives to fossil fuels.”

“Once I took this class, I was amazed at how interesting these topics were.”

“A unique aspect of this course was how many different topics it touched on. This is the only class I’ve taken that was this interdisciplinary.”

Student Perspectives

“A lot of my personal opinions on issues have been shifted. Taking this class allowed me to learn about viable alternatives to fossil fuels.”

“I had never been a huge fan of math, and I probably would have never found myself doing research on geology or chemistry issues. But once I took this class, I was amazed at how interesting these topics were.”

“The course was interdisciplinary.”

Examples of Teaching and/or Student Artifacts

While fossil fuels dominate our energy system, they are a finite resource.

What is Energy?

Society has a "power" problem, not an energy problem. Our choices and behaviors determine how fast we drain the hub (pull out the plug).

A matter of quality and quantity in our acceptable development, and the ability to meet demand is constrained by physical laws.

We must learn to live within our means.

Lessons

Eco-Design Problems in aメーカー

What is Energy?

Society has a "power" problem, not an energy problem. Our choices and behaviors determine how fast we drain the hub (pull out the plug).

A matter of quality and quantity in our acceptable development, and the ability to meet demand is constrained by physical laws.

We must learn to live within our means.