

Initial Impact of a First-Year Design-Build-Test-Compete Engineering Course

Peter D. Washabaugh, Associate Professor of Aerospace Engineering, University of Michigan Leslie A. Olsen. Professor of Technical Communications. University of Michigan

May 3, 2010

Course Profile

Five offerings of a first-year course, "Engineering 100: Introduction to Engineering, Blimp Section"

- Incorporated extensive and experiential Design-Build-Test-Compete pedagogy
- Emphasis on Aerospace Engineering
- Excellent teaching evaluations, but expensive in instructor commitment and resources

Course features

- Sequence of two Design-Build-Test-Compete projects (balloon and radio controlled blimp)
- Coupled technical and communications (foundational labs, reports, oral presentations)
- Dedicated lab, ~ \$100/student in lab disposables

Student Entry Profile

Comparison metrics include

- Entry scores (high school GPA; ACT/SAT scores)
- Preparation (math level)
- Advanced preparation (AP and transfer credit)
- Extracurricular activities (sports, music, other)
- Subsequent grades

Student Performance

Fig. 3: Performance of Fall Eng 100 Students: 2004–08

Aerospace + Blimp

2.5

Aerospace - Blimp

100 20 30 40 50

Entry Credit: AP + Transfer – Remedial Math

•

Aggregate fall sample sizes for Figures 2 an 3 • 5000 College of Engineering students

300 Blimp students

Error bars: One standard deviation of the mean No Error Bars: (• , •) Represent a single student

Discussion

- Student performance generally improved by participation in the Design-Build-Test-Compete blimp course in both
- Following winter term GPA
- Later term entry Aerospace Engineering course (Aerospace Engineering 245)
- · Insufficient data
- at higher levels of entry credit
- to determine most valuable type of transfer credit (e.g., technical or non-technical)
- 10% of Fall College of Engineering students placed in UM remedial math (negative entry fraction)
- · Entry credit and extracurricular activities
- Predictor of mean performance, levels out at 30 credits
- Some students with very large values
- Unexplained correlation
- Absolutely zero outliers!

Conclusions

Better performance of Engineering 100 blimp students in subsequent courses

- Equivalent to 2-3 AP courses (before entry to UM)
- · More significant for students with less entry credit
- More pronounced for Aerospace students.

Most prominent discriminators in performance of all College of Engineering first-year students

- · Credit at the time of entry to UM
- · Lowest of SAT or ACT scores

Correlation of number of academic credit transferred to UM for CoE students with number of sports, music, and other activities in high school

Acknowledgments

The Investigating Student Learning (ISL) Program was funded by the University of Michigan Office of the Provost, the College of Engineering, and the Center for Research on Learning and Teaching.