

Symposium on Learning Analytics at Michigan

This work is licensed under a <u>Creative Commons Attribution</u>-<u>NonCommercial-ShareAlike 3.0 United States License</u>. The Application of Quasi-Experimental Methods in Education Research

Stephen L. DesJardins Professor & Director Center for the Study of Higher and Postsecondary Education (CSHPE)

Brian P. McCall

Professor

CSHPE, Department of Economics, & Ford School of Public Policy

Rob Bielby, Allyson Flaster, Jeongeun Kim, Alfredo Sosa Doctoral Students, CSHPE

Presented to Symposium on Learning Analytics at Michigan (SLAM) November 30, 2011

Objectives

- Discuss the State of Conducting Rigorous Evaluations of Educational Programs, Policies & Practices
- Demonstrate the Application of Some Methods Now Being Used to Conduct Evaluations in Higher Education
- Provide an Opportunity for Our Students to Present to University Community & to Showcase Their Expertise

Importance of Rigor in Education Research

- Systematically Improving Education Policies, Programs, Practices Requires an Understanding of "What Works"
- Goal Should be to Make **Causal** Statements
 - Without doing so "it is difficult to accumulate a knowledge base that has value for practice or future study" (Schneider, 2007, p. 2).
- However, Education Research Has Lacked Rigor & Relevance <u>Quote</u>

Determining Causal Effects

- Randomized Controlled Trials are the "Gold Standard" for Determining Causal Effects
- Pros: Reduce Bias & Spurious Findings of Causality, Thereby Improving Knowledge of What Works
- Cons: Ethics, External Validity, Cost, Possible Errors Inherent in Observational Studies (measurement problems; "spillover" effects, attrition from study...)
- Possibilities: Oversubscribed Programs (Living Learning Communities, UROP...)

Quasi- or Non-Experimental Designs

- Compared to RCTs, No Randomization
- Many Quasi-Experimental Designs
 - Many are variation of pretest-posttest structure without randomization
 - Apply when non-experimental ("observational") data used, which is often case in ed. research
- Pros: When Properly Done May Be More Generalizable Than RCTs
- Cons: Internal Validity

Determining "Causal" Effects With Observational Data

- Often Difficult Because of Non-Random Assignment to "Treatment"
 - Example: Students often self-select into treatments (e.g., courses, interventions, programs...); may result in biased estimates when <u>standard regression methods</u> employed to determine effects of treatment
- Goal: Mimic Desirable Properties of RCTs
- Solution? Employ Designs/Methods That Account for Non-Random Assignment

- We will demonstrate some of them today

The "Counterfactual" Framework

- Provides Conceptual & Statistical Frame for Studying Causal Relationships
 - Owing to Donald Rubin (1974), Paul Holland (1986), and others
- Simple Definition of "Counterfactual": What Would Have Happened to the "Treated" Absent the Treatment?
- However, Individuals Only Observed in One State (treatment or control)
 - Therefore, problem is in est.
 - "counterfactual" (comparison group) for the treated

Applications

- Effect of Starting in CC vs. 4-Year on Subsequent Educational Outcomes (PSM)
- Does HS Course Selection Affect Subsequent Educational Outcomes? (IV)
- Effect of Gates Millennium Scholars Program on Ed. Choices & Outcomes (RD)
- In each we use methods to adjust for nonrandom assignment, thereby providing more rigorous statements of effects (relative to naïve statistical model)

Symposium on Learning Analytics at Michigan

Alfredo Sosa PhD Student

Center for the Study of Higher and Postsecondary Education University of Michigan

November 30, 2011 Ann Arbor, MI

Matching Methods in Educational Research

Application:

"Answering Whether Attendance at a Two-Year Institution Results in Differences in Educational Attainment" (Reynolds and DesJardins, 2009).

Higher Education: Handbook of Theory and Research, Volume XXIII

Does Where You Start College Affect Your Educational Attainment?

- Some Start in CCs, Other in 4-Year IHEs
- Inferential Problem: Self-Selection
 - Students who begin in CCs ("treated") may be very different (on observed & unobserved factors) than those starting in 4-years
 - Correlation between Prob(where one starts)
 & educational outcomes makes parsing
 causal effects from the observed &
 unobserved differences in students very
 difficult

A Possible Remedy: Matching

- Intuition: Find Controls w/ Pre-treatment Characteristics the Same as the Treated
- Could Use Direct Matching: Problems
- Solution: Propensity Score Matching
 - Control for pre-treatment differences by balancing each group's observable characteristics using a single number, the "propensity score" (PS)
- Goal: Estimate Effect of Treatment for Individuals with Similar Characteristics

Estimating the Propensity Score

- 1st: Estimate Probability of Treatment (PS) for Treated and Untreated
 - Typically done using logistic regression
- 2nd: Match Treated Cases to Untreated Cases with "Same" Propensity Score
 - Establishes counterfactual ("control" group)
- Then Estimate Differences in Outcomes Between Treated & Control Groups

 Typically done using regression methods

Goal of Matching

- Balancing the Treated and Control Groups on Observable Characteristics
- When Done Correctly, the Probability That Treated Observation Has Trait X=x will be the Same as Probability that Untreated Case Has Trait X=x

Matching vs. OLS Regression

• Matching weights the observation differently than does OLS in calculating the expected counterfactual for each treated observation. In OLS all the untreated units play a role in determining the expected counterfactual for any given treated unit. In matching, only untreated units similar to each treated unit have positive weight in determining the expected counterfactual.

Matching vs. OLS Regression (cont)

- Matching does not make the linear functional form assumption that OLS regression does.
- Matching helps identifying problems of lack of support (lack of balance on observable characteristics).

Empirical Strategy to Study Effect of Starting at CC vs. 4-Year College

- Example of dependent variables examined:
 - Second and third year college retention rates
 - Completion of a bachelor's degree
- Variable of interest (treatment variable)
 - -T = 1 if student attended a CC, T = 0 if attended a 4-year institution; estimate of this is of primary interest
- Data: National Education Longitudinal Study 1988 (NELS:88)

Results From CC/4 Year Study

Figure 4: Distributions of Standardized Test Scores by Treatment Status

Results From CC/4 Year Study

	OLS	NN		Kernel		LLR		RW	_
Men									
Second year	-0.174 '	* -0.146	*	-0.163	*	-0.152	*	-0.093	*
	(0.019)	(0.029)	\rightarrow	(0.025)		(0.026)		(0.047)	
Third year	-0.246 '	* -0.200	*	-0.219	*	-0.199	*	-0.111	*
	(0.020)	(0.029)	-	(0.024)		(0.024)		(0.039)	
AA	0.182 _	* 0.128	*	0.118	*	0.111	*	0.106	*
	(0.017)	(0.022)		(0.020)		(0.022)		(0.027)	
BA	-0.250	* -0.189	*	-0.219	*	-0.203	*	-0.135	*
	(0.019)	(0.027)		(0.022)		(0.022)		(0.032)	
Total credits	-23.320 _	* -20.563	*	-22.940	*	-21.077	*	-11.658	*
	(2.159)	(3.380)		(2.856)		(2.891)		(5.083)	

Table 6: ATT for attending a two-year instead of a four-year institution

Simple OLS that does not account for non-random assignment overestimates the effect of attending CC

Results From CC/4-Year Study

- In this Sample, Starting at CC Lowers Attainment Compared to Starting at 4-Yr College
- CC Students Have:
 - Lower Retention Probs to 2^{nd} & 3^{rd} Yr
 - Lower Prob(BA Completion)
- Heterogeneous Treatment Effects:
 - Results similar for women/men, with women exhibiting slightly larger treatment effects

Results (cont'd)

- OLS Estimates Overstate Treatment Effects Relative to Matching Estimates
- In this case, the "naïve" (in a statistical sense) OLS regression method performs poorly because of large differences in underlying characteristics of students who start in CC and those who start in 4-year institutions

Thank you

Using Instrumental Variables in Educational Policy Analysis

Rob Bielby, PhD Student

Center for the Study of Higher and Postsecondary Education University of Michigan

November 30, 2011 Ann Arbor, MI

Common Applications of IV Models

- When randomized controlled trials (RCT) are not available/possible
- When problems with observational data:
 - Omitted variables
 - "Reverse" causation

Using Instrumental Variables in Educational Policy Analysis

• Application:

High school coursetaking and its impact on educational outcomes

The Effect of High School Curriculum on College Completion

Policy Issue:

- In an attempt to increase college enrollment and graduation rates, states are increasingly requiring college-prep curricula for all high school students
- Research has found a positive association between taking rigorous coursework and college matriculation and success (Adelman, 2006)

1957 - 200

The Effect of High School Curriculum on College Completion

Empirical Question:

What is the <u>causal</u> effect of high school curricular choices on high school graduation, college access, college completion, and other outcomes related to higher education?

Data:

Education Longitudinal Study (ELS) of 2002 National Longitudinal Study of Youth (NLSY) of 1997 National Education Longitudinal Study (NELS) of 1988

Inferential Problem: Self Selection

- Students choose to enroll in certain high school courses
- Motivators for making these choices may also be related to educational outcomes, which limits our ability to estimate causal relationships (omitted variables)

Logic of Instrumental Variable Approach

• Variation in the independent variable of interest (course selection or program participation) has 2 components:

- Selection (endogenous)

- Other factors (exogenous)

The Instrumental Variable Approach

- IV Selection
 - Seek out variable(s) that are strongly related to our independent variable of interest (course selection), but are unrelated to the eventual outcome variable (e.g., ed. outcomes)
- Goal
 - Use instruments to remove unwanted variation in predictor variables and allow for the estimation of a causal relationships

The Instrumental Variable Approach

- Application: 2 Stage Least Squares
 - Stage 1: Instruments and other covariates are used to produce predicted levels of high school coursetaking
 - Stage 2: Predicted values of coursetaking are used as independent variables when modeling educational outcomes

Our Project

- Examine Effect of High School Course Taking on Educational Choices and Outcomes (e.g., higher ed. aspirations; application to college; enrollment in college; college course performance and completion)
- IVs Used:
 - High school level maximum course offerings
 - Local labor market conditions

Thank you

Symposium of Learning Analytics at Michigan

Jeongeun Kim & Allyson Flaster, PhD Students

Center for the Study of Higher and Postsecondary Education University of Michigan

November 30, 2011 Ann Arbor, MI

Regression Discontinuity (RD)

- Use when subjects are assigned to either a "treatment" or "control" group based on a pre-specified cut score (e.g., standardized test)
- Assumption is that students are very similar close to the cut score used to determine treatment/not
- Calculate the average difference in the outcome between the treated and untreated groups using data only for students who are close to the cut score

Regression Discontinuity (RD)

Application:

- How is the Gates Millennium Scholars (GMS) Program related to college students' time use and activities? (DesJardins, McCall, et al., 2010)
 - Effect of scholarship program on student success

The Gates Millennium Scholars (GMS) Program

- Administered by Bill & Melinda Gates Foundation, provides \$1 billion in scholarships over 20 year period
- Goal: Improve access for high achieving, lowincome students of color
- Provides a scholarship that covers unmet need
- Selection criteria: Must be Pell-eligible, 3.3 high school GPA, score on non-cognitive test

Estimating Effects of the Program

- Expected outcomes:
 - Students will respond to relaxed credit constraints by reallocating time devoted to various activities
 - May reduce time devoted to **working for pay**
 - May increase time for extra-curricular activities such as community service
- Other outcomes were examined
- Causal problem: Observed & unobserved student characteristics may influence outcomes

Regression Discontinuity Design

- Forcing variable:
 - "Scoring" rule to assign the intervention to study units
- Use cutoff value for assignment
 - Below the cutoff = control group (Non-recipients)
 - Above the cutoff = treatment group (Recipients)
- Units just above and below the cut point: Distributed in an approximately random fashion, mimicking randomized trial

The RD Estimation Strategy

Empirical Strategy

- Selection mechanism
- Forcing variable: Non-cognitive scores
- Use cutoff value for assignment
 - varies by race/ethnicity and cohort
 - Below the cutoff = control group (Non-recipients)
 - Above the cutoff = treatment group (GMS)

Empirical Strategy

- Sharp RD
- Assignment solely determined by a single index variable (i.e., non-cognitive test score)
- Fuzzy RD
- Not all students with scores above the cut point receive GMS: other eligibility criteria (i.e. Pell eligibility, high school GPA requirement)
- Instrument Variable approach (IV)
 Stage1: non-cognitive score > Receipt of GMS
 Stage2: fitted value from stage 1 > outcomes

Results: Higher Community Service

Participates in Community Service Often or Very Often: Junior Year

SCHOOL OF EDUCATION WUNIVERSITY OF MICHIGAN

Leaders

RD Estimated Impact of GMS on Participation in Work Hours

	Freshmen Year	Junior Year	
Combined	-4.14	-5.28	
	(0.000)	(0.000)	
African Americans	-5.42	-5.08	
	(0.000)	(0.000)	
Asian Americans	-5.93	-4.98	
	(0.000)	(0.000)	
Latinos	-2.55	-6.07	
	(0.004)	(0.000)	

Thank you

Conclusions

- RCTs are Desirable in Terms of Making Causal Statements, But Often Difficult to Employ
- In Education We Often Only Have Observational Data But Methods Often Used to Make Statements About Treatment Effects are Typically Deficient
- Ultimate Goal: Make Strong ("Causal")
 Statements so as to Improve Knowledge of Mechanisms That Determine Whether Programs, Practices, & Interventions are Effective
- We Need to Employ These Methods More Broadly at Michigan to Ascertain "What Works"

- Andrews, R., DesJardins, S. L., & Ranchhood, V. (2010). Estimating the Effects of the Kalamazoo Promise on Student College Choice. *Economics of Education Review*, 29(5): 722-737.
- Angrist, J. D., Imbens, G. W., & Rubin, D. B. (1996). Identification of Causal Effects Using Instrumental Variables. *Journal of the American Statistical Association*, *91*(434), 444-455.
- Angrist, J. & Pischke, J. (2009). Mostly Harmless Econometrics. Princeton University Press.
- Cameron, A. & Trivedi, P. (2005). Microeconometrics, Methods and Applications. Cambridge University Press.
- DesJardins, S. L., McCall, B. P., Ott, M. & Kim, J. (2010). A Quasi-Experimental Investigation of How the Gates Millennium Scholars Program is Related to College Students' Time Use and Activities. *Educational Evaluation and Policy Analysis*, 32(4): 456-475.
- DesJardins & McCall: Numerous Reports to the Bill and Melinda Gates Foundation on the Effects of the GMS and WSA Programs (available from the authors).

- Guo, S. and Fraser, M. W. (2010). *Propensity Score Analysis: Statistical Methods and Applications*. Thousand Oaks, CA: Sages Publications.
- Heckman, J. & Vytlacil, E. (2007). Econometric evaluation of social programs, part II. Handbook of Econometrics, Volume 6B 2007 Elsevier B.V.
- Holland, P. W. (1986). Statistics and causal inference. *Journal of the American Statistical Association*, *81(396)*, *945–960*.
- Lesik, S. A. (2008). Studying the Effectiveness of Programs and Initiatives in Higher Education Using the Regression-Discontinuity Design. In John Smart (Ed.), *Higher Education: Handbook of Theory and Research* XXIII.
- McCall, B. P. and Bielby, R. (Forthcoming, 2012). Regression Discontinuity Design: Recent Developments and a Guide to Practice for Researchers in Higher Education. In John Smart and Michael Paulsen (Eds.), *Higher Education: Handbook of Theory and Research* XXVII.

- Morgan, S. L. and Winship, C. (2007). *Counterfactuals and Causal Inference: Methods and Principles for Social Research*. Cambridge, UK: Cambridge University Press.
- Reynolds, C. L., & DesJardins, S. L. (2009). The Use of Matching Methods in Higher Education Research: Answering Whether Attendance at a Two-Year Institution Results in Differences in Educational Attainment. In John Smart (Ed.), *Higher Education: Handbook of Theory and Research* XXIII: 47-104.
- Rosenbaum, P. R., & Rubin, D. B. (1985). Constructing a Control Group Using Multivariate Matched Sampling Methods That Incorporate the Propensity Score. *The American Statistician, 39*(1), 33-38.
- Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. *Journal of Educational Psychology*, *66*(5), *688–701*.

- Schneider, B., Carnoy, M., Kilpatrick, J., Schmidt, W. H., & Shavelson, R. J. (2007). *Estimating Causal Effects Using Experimental and Observational Designs*. Washington, DC: American Educational Research Association.
- Shadish, W. R., Cook, T. D., Campbell, D.T. (2002). *Experimental and quasi-experimental designs for generalized causal inference*. Boston: Houghton-Mifflin
- Thistlethwaite, D. L. and Campbell, D. T. (1960). Regression Discontinuity Analysis: An Alternative to the Ex Post Facto Experiment. *Journal of Educational Psychology*, 51: 309-317.
- Wooldridge, J. (2002). Econometric Analysis of Cross Section and Panel Data. The MIT Press.
- Zhang, L. (2010). The Use of Panel Data Models in Higher Education Policy Studies. In John Smart (Ed.), *Higher Education: Handbook of Theory and Research* XXV: 307-349.

Background Material

Recent AERA Report on the Issue

• "Recently, questions of causality have been at the forefront of educational debates and discussions, in part because of dissatisfaction with the quality of education research...". A common concern "revolves around the design of and methods used in education research, which many claim have resulted in fragmented and often unreliable findings" (Schneider, et al., 2007)

The "Naïve" Statistical Model

- A typical program evaluation model is: $Y = \alpha + BX + \delta T + \epsilon \quad (1)$
- But often the "treatment" (T) is function of some of the same factors (Xs) & others (Zs) $T = \alpha + BX + \theta Z + \varpi$ (2)
- Failure to account for this structural relationship often leads to biased estimates of the treatment effect (δ)

Many Methods to Do the Matching

- Interval or Cell Matching
 - Stratify by PS
- Nearest Neighbor
 - Treated units matched with control cases with similar PS; latter used as counterfactual for the former
 - Typically one-to-one matching
 - Question: Matching done with or w/o replacement?

Methods to Do Matching (cont'd)

- Caliper Matching
 - NN matching within a range of PS
 - "Bandwidth" (range) chosen by researcher& is max. interval in which match is made
- Radius Matching
 - One-to many caliper matching
 - All matches within bandwidth equally weighted to construct the counterfactual.

Methods to Do Matching

- Kernel/LLR Matching
 - -Weight each untreated observation according to how *close the match is*
 - As match becomes worse the weight placed on the untreated unit decreases
- New: Optimal Matching
 - Instead of min. pair wise distance in PS, min. *total sample* distance of PS

Results From CC/4 Year Study

Figure 4: Distributions of Standardized Test Scores by Treatment Status

Figure 6: Distributions of Family Income in 1988 by Treatment Status

Figure 5: Distributions of High School Grade Point Average by Treatment Status

Results From CC/4 Year Study

Table 6: ATT for attending a two-year instead of a four-year institution									
	OLS	NN	Kernel	LLR	RW				
Men									
Second year	-0.174 * -	-0.146 *	-0.163 *	-0.152 *	-0.093 *				
	(0.019)	(0.029)	(0.025)	(0.026)	(0.047)				
Third year	-0.246 * -	-0.200 *	-0.219 *	-0.199 *	-0.111 *				
	(0.020)	(0.029)	(0.024)	(0.024)	(0.039)				
AA	0.182 * -	→ 0.128 *	0.118 *	0.111 *	0.106 *				
	(0.017)	(0.022)	(0.020)	(0.022)	(0.027)				
BA	-0.250 * -	→ -0.189 *	-0.219 *	-0.203 *	-0.135 *				
	(0.019)	(0.027)	(0.022)	(0.022)	(0.032)				
Total credits	-23.320 * -	-20.563 *	-22.940 *	-21.077 *	-11.658 *				
	(2.159)	(3.380)	(2.856)	(2.891)	(5.083)				
Women									
Second year	-0.168 *	-0.156 *	-0.153 *	-0.126 *	-0.088 *				
	(0.017)	(0.031)	(0.024)	(0.026)	(0.039)				
Third year	-0.263 *	-0.227 *	-0.239 *	-0.209 *	-0.16 *				
	(0.018)	(0.028)	(0.023)	(0.024)	(0.037)				
AA	0.228 *	0.151 *	0.172 *	0.171 *	0.157 *				
	(0.016)	(0.024)	(0.019)	(0.024)	(0.028)				
BA	-0.284 *	-0.227 *	-0.232 *	-0.209 *	-0.166 *				
	(0.018)	(0.024)	(0.020)	(0.021)	(0.030)				
Total credits	-24.277 *	-21.620 *	-22.360 *	-18.972 *	-13.988 *				
	(2.055)	(3.279)	(2.623)	(2.773)	(3.877)				

Standard errors are jointly bootstrapped using 1000 replications. Asterisks denote statistical significance at the 10% level or better.